Molecular mimicking of C-terminal phosphorylation tunes the surface dynamics of CaV1.2 calcium channels in hippocampal neurons
نویسندگان
چکیده
L-type voltage-gated CaV1.2 calcium channels (CaV1.2) are key regulators of neuronal excitability, synaptic plasticity, and excitation-transcription coupling. Surface-exposed CaV1.2 distributes in clusters along the dendrites of hippocampal neurons. A permanent exchange between stably clustered and laterally diffusive extra-clustered channels maintains steady-state levels of CaV1.2 at dendritic signaling domains. A dynamic equilibrium between anchored and diffusive receptors is a common feature among ion channels and is crucial to modulate signaling transduction. Despite the importance of this fine regulatory system, the molecular mechanisms underlying the surface dynamics of CaV1.2 are completely unexplored. Here, we examined the dynamic states of CaV1.2 depending on phosphorylation on Ser-1700 and Ser-1928 at the channel C terminus. Phosphorylation at these sites is strongly involved in CaV1.2-mediated nuclear factor of activated T cells (NFAT) signaling, long-term potentiation, and responsiveness to adrenergic stimulation. We engineered CaV1.2 constructs mimicking phosphorylation at Ser-1700 and Ser-1928 and analyzed their behavior at the membrane by immunolabeling protocols, fluorescence recovery after photobleaching, and single particle tracking. We found that the phosphomimetic S1928E variant increases the mobility of CaV1.2 without altering the steady-state maintenance of cluster in young neurons and favors channel stabilization later in differentiation. Instead, mimicking phosphorylation at Ser-1700 promoted the diffusive state of CaV1.2 irrespective of the differentiation stage. Together, these results reveal that phosphorylation could contribute to the establishment of channel anchoring mechanisms depending on the neuronal differentiation state. Finally, our findings suggest a novel mechanism by which phosphorylation at the C terminus regulates calcium signaling by tuning the content of CaV1.2 at signaling complexes.
منابع مشابه
Ca1.2 and CaV1.3 neuronal L-type calcium channels: differential targeting and signaling to pCREB.
Neurons express multiple types of voltage-gated calcium (Ca2+) channels. Two subtypes of neuronal L-type Ca2+ channels are encoded by CaV1.2 and CaV1.3 pore-forming subunits. To compare targeting of CaV1.2 and CaV1.3 L-type Ca2+ channels, we transfected rat hippocampal neuronal cultures with surface-epitope-tagged sHA-CaV1.2 or sHA-CaV1.3a constructs and found that: (i) both sHA-CaV1.2 and sHA-...
متن کاملFunctional roles of a C-terminal signaling complex of CaV1 channels and A-kinase anchoring protein 15 in brain neurons.
Regulation of CaV1.2 channels in cardiac myocytes by the β-adrenergic pathway requires a signaling complex in which the proteolytically processed distal C-terminal domain acts as an autoinhibitor of channel activity and mediates up-regulation by the β-adrenergic receptor and PKA bound to A-kinase anchoring protein 15 (AKAP15). We examined the significance of this distal C-terminal signaling com...
متن کاملAbnormal alterations in the Ca²⁺/CaV1.2/calmodulin/caMKII signaling pathway in a tremor rat model and in cultured hippocampal neurons exposed to Mg²⁺-free solution.
Voltage-dependent calcium channels (VDCCs) are key elements in epileptogenesis. There are several binding-sites linked to calmodulin (CaM) and several potential CaM-dependent protein kinase II (CaMKII)-mediated phosphorylation sites in CaV1.2. The tremor rat model (TRM) exhibits absence‑like seizures from 8 weeks of age. The present study was performed to detect changes in the Ca2+/CaV1.2/CaM/C...
متن کاملAssociation of CaV1.3 L-type calcium channels with Shank.
Neurons express multiple types of voltage-gated calcium (Ca2+) channels. Two subtypes of neuronal L-type Ca2+ channels are encoded by CaV1.2 and CaV1.3 pore-forming subunits. Both CaV1.2 and CaV1.3 subunits contain class I PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain-binding consensus at their C termini. In yeast two-hybrid screen of rat brain cDNA library with the C-termin...
متن کاملCav1.2 and Cav1.3 L-type calcium channels operate in a similar voltage range but show different coupling to Ca -dependent conductances in hippocampal neurons
Hasreiter J, Goldnagl L, Böhm S, Kubista H. Cav1.2 and Cav1.3 L-type calcium channels operate in a similar voltage range but show different coupling to Ca -dependent conductances in hippocampal neurons. Am J Physiol Cell Physiol 306: C1200–C1213, 2014. First published April 24, 2014; doi:10.1152/ajpcell.00329.2013.—In the central nervous system, L-type voltage-gated calcium channels (LTCCs) com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 293 شماره
صفحات -
تاریخ انتشار 2018